organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Jizhong Yan and **Dongping Cheng***

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310012, People's Republic of China

Correspondence e-mail: cdongping@sina.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.107 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

6-Chloro-2,3,4,5-tetrahydro-7,8-dimethoxy-1-(4-methoxyphenyl)-1H-3-benzazepine

The title compound, C₁₉H₂₂NClO₃, was synthesized by an intramolecular condensation reaction of N-[2-hydroxy-2-(methoxyphenyl)ethyl]-2-(2-chloro-3,4-dimethoxy-

phenyl)-

ethylamine in trifluoroacetic acid with 36 N H₂SO₄ at room temperature and obtained in 69% yield. The crystal structure determined by X-ray diffraction shows normal bond lengths and angles. The seven-membered ring adopts a half-chair conformation.

Comment

The title compound, (I) (Fig. 1), is an important pharmaceutical intermediate: removal of the methoxy groups with BBr₃ gives fenoldopam. Fenoldopam is a renal vasodilator and useful in treating hypertension and in renal ischemia. Fenoldopam is also a good agent for studying D-1 receptors and the consequences of their stimulation in the periphery of the kidneys (McCarthy et al., 1986; Weinstock et al., 1980, 1986).

All bond lengths and angles in (I) are normal (Table 1). The C-C bond distances and C-C-C angles in the benzene rings are in the ranges 1.379 (2)-1.403 (2) Å and 117.04 (15)-123.32 (15)°, respectively. The two benzene rings make a dihedral angle of $103.8 (2)^{\circ}$. In the seven-membered ring, the interatomic distances of 1.456 (3) Å for N1-C10 and 1.464 (3) Å for N1–C11 reveal their single-bond character. The seven-membered ring adopts a half-chair conformation: atoms C5, C6, C9 and C12 are coplanar, while atoms C10, C11 and N1 deviate from this plane by 1.220 (3), 1.252 (3) and 1.133 (3) Å, respectively.

Experimental

A solution of N-[2-hydroxy-2-(methoxyphenyl)ethyl]-2-(2-chloro-3,4-dimethoxyphenyl)ethylamine (78.7 g) in trifluoroacetic acid (590 ml) was treated at 298 K with 36 N H_2SO_4 (17.9 ml) and then Received 22 September 2004 Accepted 15 October 2004 Online 13 November 2004

02268 Yan and Cheng • C₁₉H₂₂CINO₃

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

stirred for 3.5 h at 298 K. Anhydrous NaOAc (79.3 g) was added, which raised the pot temperature to 333 K. The reaction mixture was concentrated at less than 328 K under vacuum, and the residue was diluted with water and made basic with 14 N aqueous ammonia with cooling. The mixture was extracted with CH₂Cl₂ and the organic layer was dried over MgSO4 and concentrated under vacuum to give a yellow solid. Recrystallization from EtOAc and washing the product with diethyl ether gave 51.7 g (69%) of crystals. Suitable crystals were obtained by evaporation of an ethanol solution (m.p. 414-415 K). IR (KBr, ν cm⁻¹): 3348, 2931, 2819, 1607, 1562, 1511, 1485, 1301, 1249, 1096, 1040, 833, 786; ¹H NMR (CDCl₃, δ , p.p.m.): 7.05 (d, 2H, J = 8.4 Hz), 6.89 (*d*, 2H, J = 8.4 Hz), 6.38 (*s*, 1H), 4.22 (*d*, 1H, J = 5.7 Hz), 3.84–3.69 (*m*, 3H), 3.43 (*dd*, 1H), 3.33 (*dd*, 1H, J = 2.2, 13.6 Hz), 3.12 (m, 1H), 3.10 (m, 1H), 2.93 (d, 2H, J = 4.0 Hz), 1.94 (s, 1H); analysis calculated for C19H22CINO3: C 65.61, H 6.38, N 4.03%; found: C 65.49, H 6.46, N 4.08%.

Crystal data

$C_{19}H_{22}CINO_3$	Z = 2
$M_r = 347.83$	$D_x = 1.345 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 9.1365 (2) Å	Cell parameters from 283
b = 9.3759(2) Å	reflections
c = 10.9936 (3) Å	$\theta = 2.2-27.4^{\circ}$
$\alpha = 113.675 (1)^{\circ}$	$\mu = 0.24 \text{ mm}^{-1}$
$\beta = 92.350 (1)^{\circ}$	T = 293 (2) K
$\gamma = 93.164 \ (2)^{\circ}$	Prism, colorless
V = 859.11 (4) Å ³	$0.22\times0.12\times0.11$ mm
Data collection	
Rigaku R-AXIS RAPID	3806 independent reflecti
diffractometer	2804 reflections with $I > 2$
ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{mm} = 27.5^{\circ}$
(ABSCOR: Higashi 1995)	$h = -11 \rightarrow 11$
$T_{min} = 0.966$ $T_{max} = 0.974$	$k = -12 \rightarrow 12$
6003 measured reflections	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0475P)]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.2704P

 $wR(F^2) = 0.107$ S = 1.013806 reflections 221 parameters H atoms treated by a mixture of independent and constrained refinement

$D_x = 1.345 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 2832
reflections
$\theta = 2.2 - 27.4^{\circ}$
$\mu = 0.24 \text{ mm}^{-1}$
T = 293 (2) K
Prism, colorless
$0.22 \times 0.12 \times 0.11 \text{ mm}$

3806 independent reflections
2804 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.025$
$\theta_{\rm max} = 27.5^{\circ}$
$h = -11 \rightarrow 11$
$k = -12 \rightarrow 12$
$l = -14 \rightarrow 14$

$w = 1/[\sigma^2(F_o^2) + (0.0475P)^2]$
+ 0.2704P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1			
Selected	geometric parameters	(Å.	°).

Cl1-C1	1.7473 (17)	C4-C5	1.391 (2)
O1-C2	1.3767 (19)	C5-C6	1.403 (2)
O1-C7	1.426 (2)	C5-C12	1.531 (2)
O2-C3	1.367 (2)	C6-C9	1.515 (2)
O2-C8	1.417 (2)	C9-C10	1.517 (3)
O3-C16	1.375 (2)	C11-C12	1.534 (3)
O3-C19	1.423 (3)	C16-C17	1.388 (3)
N1-C10	1.456 (3)	C17-C18	1.379 (2)
N1-C11	1.464 (3)	C12-C13	1.517 (2)
C1-C2	1.383 (2)	C13-C14	1.383 (3)
C1-C6	1.395 (2)	C13-C18	1.401 (3)
C2-C3	1.388 (2)	C14-C15	1.390 (3)
C3-C4	1.387 (2)	C15-C16	1.383 (3)
C2-O1-C7	114.19 (14)	C1-C6-C9	121.80 (15)
C3-O2-C8	117.56 (14)	C5-C6-C9	121.10 (15)
C16-O3-C19	117.74 (17)	C6-C9-C10	115.07 (17)
C10-N1-C11	114.27 (16)	N1-C10-C9	111.64 (17)
C2-C1-C6	123.32 (15)	N1-C11-C12	113.19 (17)
C2-C1-Cl1	115.82 (13)	C13-C12-C5	113.69 (14)
C6-C1-Cl1	120.85 (14)	C13-C12-C11	109.46 (15)
O1-C2-C1	120.85 (15)	C5-C12-C11	112.44 (15)
O1-C2-C3	120.42 (15)	C14-C13-C18	117.71 (16)
C1-C2-C3	118.65 (15)	C14-C13-C12	120.84 (17)
O2-C3-C4	124.73 (15)	C18-C13-C12	121.37 (17)
O2-C3-C2	115.79 (15)	C13-C14-C15	121.90 (18)
C4-C3-C2	119.48 (16)	O3-C16-C15	124.66 (17)
C3-C4-C5	121.41 (15)	O3-C16-C17	115.13 (17)
C4-C5-C6	120.05 (15)	C15-C16-C17	120.20 (16)
C4-C5-C12	120.12 (14)	C18-C17-C16	119.82 (18)
C6-C5-C12	119.79 (15)	C17-C18-C13	121.19 (17)
C1-C6-C5	117.04 (16)	C16-C15-C14	119.16 (17)

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C-H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C-C bond. The position of the amine H atom was refined freely along with an isotropic displacement parameter. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-566.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- McCarthy, J. R., McCowan, J., Zimmerman, M. B., Wenger, M. A. & Emmert, L. W. (1986). J. Med. Chem. 29, 1586–1590.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Göttingen University, Germany.
- Weinstock, J., Ladd, D. L., Wilson, J. W., Brush, C. K., Yim, N. C. F., Gallagher, G., McCarthy, M. E., Silvestri, J., Sarau, H. M., Flaim, K. E., Ackerman, D. M., Setler, P. E., Tobia, A. T. & Hahn, R. A.(1986). J. Med. Chem. 29, 2315-2325.
- Weinstock, J., Wilson, J. W., Ladd, B. D. L., Brush, C. K., Pfeiffer, F. R., Kuo, G. Y., Holden, K. G., Yim, N. C. F., Hahn, R. A., Wardell J. R., Tobia P. E., Setler, P. E., Sarau, H. M. & Ridley, P. T. (1980). J. Med. Chem. 23, 973-975.