Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jizhong Yan and Dongping Cheng*

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310012, People's Republic of China

Correspondence e-mail: cdongping@sina.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.044$
$w R$ factor $=0.107$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

6-Chloro-2,3,4,5-tetrahydro-7,8-dimethoxy-1-(4-methoxyphenyl)-1H-3-benzazepine

The title compound, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NClO}_{3}$, was synthesized by an intramolecular condensation reaction of N-[2-hydroxy-2-(methoxyphenyl)ethyl]-2-(2-chloro-3,4-dimethoxy-phenyl)-
ethylamine in trifluoroacetic acid with $36 \mathrm{NH}_{2} \mathrm{SO}_{4}$ at room temperature and obtained in 69% yield. The crystal structure determined by X-ray diffraction shows normal bond lengths and angles. The seven-membered ring adopts a half-chair conformation.

Comment

The title compound, (I) (Fig. 1), is an important pharmaceutical intermediate: removal of the methoxy groups with BBr_{3} gives fenoldopam. Fenoldopam is a renal vasodilator and useful in treating hypertension and in renal ischemia. Fenoldopam is also a good agent for studying D-1 receptors and the consequences of their stimulation in the periphery of the kidneys (McCarthy et al., 1986; Weinstock et al., 1980, 1986).

(I)

All bond lengths and angles in (I) are normal (Table 1). The $\mathrm{C}-\mathrm{C}$ bond distances and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the benzene rings are in the ranges 1.379 (2)-1.403 (2) \AA and 117.04 (15)$123.32(15)^{\circ}$, respectively. The two benzene rings make a dihedral angle of $103.8(2)^{\circ}$. In the seven-membered ring, the interatomic distances of $1.456(3) \AA$ for $\mathrm{N} 1-\mathrm{C} 10$ and 1.464 (3) \AA for $\mathrm{N} 1-\mathrm{C} 11$ reveal their single-bond character. The seven-membered ring adopts a half-chair conformation: atoms C5, C6, C9 and C12 are coplanar, while atoms C10, C11 and N1 deviate from this plane by 1.220 (3), 1.252 (3) and 1.133 (3) Å, respectively.

Experimental

A solution of N-[2-hydroxy-2-(methoxyphenyl)ethyl]-2-(2-chloro-3,4-dimethoxyphenyl)ethylamine (78.7 g) in trifluoroacetic acid $(590 \mathrm{ml})$ was treated at 298 K with $36 \mathrm{~N}_{2} \mathrm{SO}_{4}(17.9 \mathrm{ml})$ and then

Figure 1
View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
stirred for 3.5 h at 298 K . Anhydrous $\mathrm{NaOAc}(79.3 \mathrm{~g}$) was added, which raised the pot temperature to 333 K . The reaction mixture was concentrated at less than 328 K under vacuum, and the residue was diluted with water and made basic with 14 N aqueous ammonia with cooling. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was dried over MgSO_{4} and concentrated under vacuum to give a yellow solid. Recrystallization from EtOAc and washing the product with diethyl ether gave $51.7 \mathrm{~g}(69 \%)$ of crystals. Suitable crystals were obtained by evaporation of an ethanol solution (m.p. 414-415 K). IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): 3348, 2931, 2819, 1607, 1562, 1511, 1485, 1301, 1249, 1096, 1040, 833, 786; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \delta$, p.p.m.): $7.05(d, 2 \mathrm{H}, J=$ $8.4 \mathrm{~Hz}), 6.89(d, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.38(s, 1 \mathrm{H}), 4.22(d, 1 \mathrm{H}, J=5.7 \mathrm{~Hz})$, $3.84-3.69(m, 3 H), 3.43(d d, 1 \mathrm{H}), 3.33(d d, 1 \mathrm{H}, J=2.2,13.6 \mathrm{~Hz}), 3.12$ $(m, 1 \mathrm{H}), 3.10(m, 1 \mathrm{H}), 2.93(d, 2 \mathrm{H}, J=4.0 \mathrm{~Hz}), 1.94(s, 1 \mathrm{H})$; analysis calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{3}$: $\mathrm{C} 65.61, \mathrm{H} 6.38, \mathrm{~N} 4.03 \%$; found: C 65.49 , H 6.46, N 4.08\%.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{3}$
$M_{r}=347.83$
Triclinic, $P \overline{1}$
$a=9.1365$ (2) A
$b=9.3759$ (2) \AA
$c=10.9936$ (3) \AA
$\alpha=113.675(1)^{\circ}$
$\beta=92.350(1)^{\circ}$
$\gamma=93.164(2)^{\circ}$
$V=859.11$ (4) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.345 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2832 \\
& \quad \text { reflections } \\
& \theta=2.2-27.4^{\circ} \\
& \mu=0.24 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K}^{2} \\
& \text { Prism, colorless } \\
& 0.22 \times 0.12 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.966, T_{\text {max }}=0.974$
6003 measured reflections

$$
\begin{aligned}
& 3806 \text { independent reflections } \\
& 2804 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.025 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-12 \rightarrow 12 \\
& l=-14 \rightarrow 14
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.107$
$S=1.01$
3806 reflections
221 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

C11-C1	$1.7473(17)$	C4-C5	$1.391(2)$
O1-C2	$1.3767(19)$	C5-C6	$1.403(2)$
O1-C7	$1.426(2)$	C5-C12	$1.531(2)$
O2-C3	$1.367(2)$	C6-C9	$1.515(2)$
O2-C8	$1.417(2)$	C9-C10	$1.517(3)$
O3-C16	$1.375(2)$	C11-C12	$1.534(3)$
O3-C19	$1.423(3)$	C16-C17	$1.388(3)$
N1-C10	$1.456(3)$	C17-C18	$1.379(2)$
N1-C11	$1.464(3)$	C12-C13	$1.517(2)$
C1-C2	$1.383(2)$	C13-C14	$1.383(3)$
C1-C6	$1.395(2)$	C13-C18	$1.401(3)$
C2-C3	$1.388(2)$	C14-C15	$1.390(3)$
C3-C4	$1.387(2)$	C15-C16	$1.383(3)$
C2-O1-C7	$114.19(14)$	C1-C6-C9	$121.80(15)$
C3-O2-C8	$117.56(14)$	C5-C6-C9	$121.10(15)$
C16-O3-C19	$117.74(17)$	C6-C9-C10	$115.07(17)$
C10-N1-C11	$114.27(16)$	N1-C10-C9	$111.64(17)$
C2-C1-C6	$123.32(15)$	N1-CC11-C12	$113.19(17)$
C2-C1-Cl1	$115.82(13)$	C13-C12-C5	$113.69(14)$
C6-C1-Cl1	$120.85(14)$	C13-C12-C11	$109.46(15)$
O1-C2-C1	$120.85(15)$	C5-C12-C11	$112.44(15)$
O1-C2-C3	$120.42(15)$	C14-C13-C18	$117.71(16)$
C1-C2-C3	$118.65(15)$	C14-C13-C12	$120.84(17)$
O2-C3-C4	$124.73(15)$	C18-C13-C12	$121.37(17)$
O2-C3-C2	$115.79(15)$	C13-C14-C15	$121.90(18)$
C4-C3-C2	$119.48(16)$	O3-C16-C15	$124.66(17)$
C3-C4-C5	$121.41(15)$	O3-C16-C17	$115.13(17)$
C4-C5-C6	$120.05(15)$	C15-C16-C17	$120.20(16)$
C4-C5-C12	$120.12(14)$	C18-C17-C16	$119.82(18)$
C6-C5-C12	$119.79(15)$	C17-C18-C13	$121.19(17)$
C1-C6-C5	$117.04(16)$	C16-C15-C14	$119.16(17)$

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C H distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. The position of the amine H atom was refined freely along with an isotropic displacement parameter. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-566.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
McCarthy, J. R., McCowan, J., Zimmerman, M. B., Wenger, M. A. \& Emmert, L. W. (1986). J. Med. Chem. 29, 1586-1590.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Göttingen University, Germany.
Weinstock, J., Ladd, D. L., Wilson, J. W., Brush, C. K., Yim, N. C. F., Gallagher, G., McCarthy, M. E., Silvestri, J., Sarau, H. M., Flaim, K. E., Ackerman, D. M., Setler, P. E., Tobia, A. T. \& Hahn, R. A.(1986). J. Med. Chem. 29, 2315-2325.
Weinstock, J., Wilson, J. W., Ladd, B. D. L., Brush, C. K., Pfeiffer, F. R., Kuo, G. Y., Holden, K. G., Yim, N. C. F., Hahn, R. A., Wardell J. R., Tobia P. E., Setler, P. E., Sarau, H. M. \& Ridley, P. T. (1980). J. Med. Chem. 23, 973-975.

[^0]: (C) 2004 International Union of Crystallography

